Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rational design of surface-confined nanostructured self-assemblies based on functional comb-shaped copolymers for tunable molecular orientation

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Jin-Wook-
dc.contributor.authorAn, Jongil-
dc.contributor.authorSon, Seung-Rak-
dc.contributor.authorKim, Soyern-
dc.contributor.authorPark, Jisung-
dc.contributor.authorPark, Chan Beom-
dc.contributor.authorLee, Jun Hyup-
dc.date.accessioned2021-11-02T07:40:04Z-
dc.date.available2021-11-02T07:40:04Z-
dc.date.created2021-11-02-
dc.date.issued2021-11-
dc.identifier.issn1381-5148-
dc.identifier.urihttp://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/41392-
dc.description.abstractFunctional ultrathin nanoarchitectures are commonly based on hierarchical molecular self-assemblies that are structurally tunable and facilely fabricable, and have found a broad range of potential applications from nanoelectronics to biosensors. Here, we demonstrate a simple and elegant approach for the rational design of ultrathin molecular nanoarchitectures for tunable interfacial orientation of liquid crystals (LCs) using the surfaceconfinement of functional amphiphilic copolymers. The surface-confined nanostructured self-assemblies are simply prepared by introducing common functional polymers into amphiphilic systems. The surface-confined copolymeric nanoalignment layer, which is constructed from the simple doping and molecular self-assembly of comb-shaped amphiphilic copolymers in a confined LC medium, comprises a hydrophobic polyacrylate segment with a long side chain moiety capable of uniformly controlling the LC alignment and a hydrophilic polyacrylic acid segment with a carboxylic acid group confined to the hydrophilic surface of indium tin oxide substrate. The combination of structural variations on amphiphilic copolymer system and tunability of molecular orientation makes the surface-confined copolymeric nano-assemblies highly attractive ultrathin nanoarchitectures. The resulting nanostructured self-assemblies exhibit a spontaneous and uniform vertical orientation of LC molecules, simultaneously providing the LC device with a superfast electro-optical switching time and a strong surface anchoring control.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER-
dc.relation.isPartOfREACTIVE & FUNCTIONAL POLYMERS-
dc.titleRational design of surface-confined nanostructured self-assemblies based on functional comb-shaped copolymers for tunable molecular orientation-
dc.typeArticle-
dc.identifier.doi10.1016/j.reactfunctpolym.2021.105042-
dc.type.rimsART-
dc.identifier.bibliographicCitationREACTIVE & FUNCTIONAL POLYMERS, v.168-
dc.description.journalClass1-
dc.identifier.wosid000704434700008-
dc.identifier.scopusid2-s2.0-85115803613-
dc.citation.titleREACTIVE & FUNCTIONAL POLYMERS-
dc.citation.volume168-
dc.contributor.affiliatedAuthorLee, Jun Hyup-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorComb-shaped amphiphilic copolymer-
dc.subject.keywordAuthorLiquid crystal-
dc.subject.keywordAuthorMolecular orientation-
dc.subject.keywordAuthorNanostructured self-assemblies-
dc.subject.keywordAuthorSurface-confinement-
dc.subject.keywordPlusTARGETED DRUG-DELIVERY-
dc.subject.keywordPlusBLOCK-COPOLYMERS-
dc.subject.keywordPlusUNIMOLECULAR MICELLES-
dc.subject.keywordPlusMULTIDRUG-RESISTANCE-
dc.subject.keywordPlusPOLYMERIC MICELLES-
dc.subject.keywordPlusALIGNMENT LAYER-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusDENSITIES-
dc.subject.keywordPlusMEMBRANES-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryChemistry, Applied-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jun Hyup photo

Lee, Jun Hyup
College of Engineering (Department of Chemical)
Read more

Altmetrics

Total Views & Downloads

BROWSE