Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synthesizable Double Perovskite Oxide Search via Machine Learning and High-Throughput Computational Screening

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Joonchul-
dc.contributor.authorKim, Eunsong-
dc.contributor.authorMin, Kyoungmin-
dc.date.accessioned2021-11-15T00:40:03Z-
dc.date.available2021-11-15T00:40:03Z-
dc.date.created2021-11-15-
dc.date.issued2021-10-
dc.identifier.issn2513-0390-
dc.identifier.urihttp://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/41574-
dc.description.abstractDouble perovskite structures have great potential for applications in batteries, lighting devices, and energy-harvesting materials. In this study, the synthesizability of ABB'O-3 double perovskite materials is predicted using machine learning. The machine learning algorithms are validated by performing high-throughput computational screening. First, material properties extracted from the Materials Project database are used as training data to develop models to predict the formation energy and convex hull energy of general inorganic materials. A regression model predicts the formation energy of general inorganic materials with a high accuracy; an R-squared value equal to 0.98 and a root-mean-square error of 0.175 eV atom(-1) are recorded. In addition, a classification accuracy for the convex hull energy of 0.77 is calculated, with an F1-score of 0.771, in a separate model. Both models are employed to estimate the possible synthesizability of 11 763 ABB'O3 structures and their accuracy is further validated by performing first-principles calculations, whose classification accuracy for the convex hull energy reaches an accuracy of 0.646, with an F1-score of 0.733. The constructed surrogate model, as well as the materials database, can guide the discovery of synthesizable double perovskite oxide structures.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.relation.isPartOfADVANCED THEORY AND SIMULATIONS-
dc.titleSynthesizable Double Perovskite Oxide Search via Machine Learning and High-Throughput Computational Screening-
dc.typeArticle-
dc.identifier.doi10.1002/adts.202100263-
dc.type.rimsART-
dc.identifier.bibliographicCitationADVANCED THEORY AND SIMULATIONS, v.4, no.10-
dc.description.journalClass1-
dc.identifier.wosid000692477800001-
dc.identifier.scopusid2-s2.0-85114135215-
dc.citation.number10-
dc.citation.titleADVANCED THEORY AND SIMULATIONS-
dc.citation.volume4-
dc.contributor.affiliatedAuthorMin, Kyoungmin-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorconvex hull energy-
dc.subject.keywordAuthordouble perovskite-
dc.subject.keywordAuthorformation energy-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorperovskite synthesizability-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusEFFICIENT-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Min, Kyoungmin photo

Min, Kyoungmin
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE