Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfacesopen access

Authors
Lee, Sang HeonThunemann, MartinLee, KeundongCleary, Daniel R.Tonsfeldt, Karen J.Oh, HongseokAzzazy, FaridTchoe, YoungbinBourhis, Andrew M.Hossain, LorraineRo, Yun GooTanaka, AtsunoriKilic, KivilcimDevor, AnnaDayeh, Shadi A.
Issue Date
Jun-2022
Publisher
WILEY-V C H VERLAG GMBH
Keywords
arrays; brain; flexible; microneedles; microwires; thousand channels; transparent
Citation
ADVANCED FUNCTIONAL MATERIALS, v.32, no.25
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
32
Number
25
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/43028
DOI
10.1002/adfm.202112045
ISSN
1616-301X
Abstract
The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Hongseok photo

Oh, Hongseok
College of Natural Sciences (Department of Physics)
Read more

Altmetrics

Total Views & Downloads

BROWSE