Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evaluation of principal features for predicting bulk and shear modulus of inorganic solids with machine learning

Authors
Lee, MyeonghunKim, MinseonMin, Kyoungmin
Issue Date
Dec-2022
Publisher
ELSEVIER
Keywords
Machine learning; Elastic properties; Feature selection; Feature engineering; Inorganic solids
Citation
MATERIALS TODAY COMMUNICATIONS, v.33
Journal Title
MATERIALS TODAY COMMUNICATIONS
Volume
33
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/43250
DOI
10.1016/j.mtcomm.2022.104208
ISSN
2352-4928
Abstract
The modulus of elasticity describes the ability of a solid to resist external forces, and plays a critical role in the development of new materials to maintain structural integrity. This work identifies the ideal feature for developing a prediction model for two elastic moduli - shear modulus (G) and bulk modulus (K)- of inorganic solids. A total of 4399 were generated (4392 features using material optimal descriptor network (MODNet) featurizers and seven additional features from the previous work) for the 17,051 datapoints, and four feature selection methods were applied: Pearson's correlation coefficient-based feature selection (PFS), MODNet-based feature selection (MFS), importance-based feature selection (IFS) measured by models, and the intersection of all selected (IAS). In addition, the prediction accuracies of various machine learning algorithms and neural networks were compared. As a result, using the light gradient boosting machine (LGBM) model with the IFS method, R2 score was obtained as 0.89 ( +/- 0.02) with only 710 features for G, and 0.91 ( +/- 0.03) with 588 features for K. The latter obviously showed better performance with fewer features. Therefore, it is expected that these main features, such as XRDPowderPattern, ElementProperty, and AGNIFingerPrint, can be efficiently utilized for the prediction of G and K, in the research on the development of new inorganic materials.
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Min, Kyoungmin photo

Min, Kyoungmin
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE