Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Output-Capacitor-Free Synthesizable Digital LDO Using CMP-Triggered Oscillator and Droop Detector

Authors
Oh, J.Hwang, Y.Park, J.Seok, M.Jeong, D.
Issue Date
Jun-2023
Publisher
Institute of Electrical and Electronics Engineers Inc.
Keywords
Asynchronous; capacitor-free; Clocks; comparator (CMP)-triggered oscillator; Detectors; digital low-dropout regulator (DLDO); droop detector; Logic gates; low-dropout regulator (LDO); metastability; Oscillators; power management; Regulation; Shift registers; synthesizable; Voltage control
Citation
IEEE Journal of Solid-State Circuits, v.58, no.6, pp.1769 - 1781
Journal Title
IEEE Journal of Solid-State Circuits
Volume
58
Number
6
Start Page
1769
End Page
1781
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/44205
DOI
10.1109/JSSC.2022.3213778
ISSN
0018-9200
Abstract
This article presents a synthesizable digital low-dropout regulator (DLDO) that precludes the use of an output load capacitor. For efficient regulation, the DLDO consists of fine and coarse loops that have different load conditions to operate. The dual loops are made of typical standard cells to improve the synthesizability. In the coarse loop, a comparator (CMP)-triggered oscillator is employed to generate a high-frequency clock signal without concerning the metastability in the CMP. In order to achieve a fast response to a voltage droop caused by load&#x2013;current variation, a droop detector and latch-based drivers are exploited that are capable of compensating for a voltage droop asynchronously. The prototype of the DLDO was fabricated in 28-nm CMOS technology. A range of supply voltage is from 0.5 to 1.0 V with a 50-mV dropout voltage. Depending on a supply voltage, a maximum load current and a quiescent current are measured as 160-to-480 mA and 7.7-to-241 <inline-formula> <tex-math notation=LaTeX>$\mu$</tex-math> </inline-formula>A, respectively. While a load current is increased from 20 to 450 mA with a 2-ns edge time, a 112-mV voltage droop and a 1.4-ns response time are achieved. Thanks to the synthesizability and the output-capacitor-free design, the DLDO occupies an 0.049-mm<inline-formula> <tex-math notation=LaTeX>$^2$</tex-math> </inline-formula> total area and offers 9.8-A/mm<inline-formula> <tex-math notation=LaTeX>$^2$</tex-math> </inline-formula> current density. IEEE
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Young-Ha photo

Hwang, Young-Ha
College of Information Technology (Department of Electronic Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE