Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-throughput data-driven machine learning prediction of thermal expansion coefficients of high-entropy solid solution carbides

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Myungjae-
dc.contributor.authorKim, Jiho-
dc.contributor.authorKim, Hyokyeong-
dc.contributor.authorKim, Jiwoong-
dc.date.accessioned2024-07-01T06:30:39Z-
dc.date.available2024-07-01T06:30:39Z-
dc.date.issued2024-08-
dc.identifier.issn0263-4368-
dc.identifier.issn2213-3917-
dc.identifier.urihttps://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/49765-
dc.description.abstractRecent advances in machine learning and the expanding availability of materials data have enabled significant developments in materials science. In this study, novel configurations of high-entropy ceramic (HEC) materials were explored by predicting their coefficient of thermal expansion (CTE) using machine learning (ML) and highthroughput screening. A machine learning model was built using 3360 datasets containing the thermodynamic, elastic, and thermophysical properties of HEC with carbide configurations of (Ti0.2Ta0.2X0.2Y0.2Z0.2)C. The high correlation of the bulk and Young's moduli, and cohesive energy features with the CTE facilitated its prediction. The random forest (RF) and neural network (NET)-based models successfully reproduced the CTE reported in existing experimental and theoretical studies. Overall, first-principles calculation was implemented to configure a database for HEC and a new ML application method is proposed.-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCI LTD-
dc.titleHigh-throughput data-driven machine learning prediction of thermal expansion coefficients of high-entropy solid solution carbides-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijrmhm.2024.106738-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, v.122-
dc.identifier.wosid001249508200001-
dc.identifier.scopusid2-s2.0-85194540301-
dc.citation.titleINTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS-
dc.citation.volume122-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0263436824001860?via%3Dihub-
dc.publisher.location영국-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorFirst -principles calculation-
dc.subject.keywordAuthorHigh -entropy carbide-
dc.subject.keywordAuthorThermal expansion-
dc.subject.keywordPlusMIXTURES-
dc.subject.keywordPlusHARDNESS-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Go to Link
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jiwoong photo

Kim, Jiwoong
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE