Detailed Information

Cited 6 time in webofscience Cited 11 time in scopus
Metadata Downloads

Polymer Composite Containing Carbon Nanotubes and their Applications

Authors
Park, Sung-HoonBae, Joonwon
Issue Date
Jul-2017
Publisher
BENTHAM SCIENCE PUBL LTD
Keywords
Carbon nanotube; dispersion; electrical percolation threshold; electromagnetic interference shielding; functionalization; polymer composites
Citation
RECENT PATENTS ON NANOTECHNOLOGY, v.11, no.2, pp.109 - 115
Journal Title
RECENT PATENTS ON NANOTECHNOLOGY
Volume
11
Number
2
Start Page
109
End Page
115
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/7403
DOI
10.2174/1872210510666161027155916
ISSN
1872-2105
Abstract
Background: Carbon nanotubes (CNTs) are attractive nanostructures in this regard, primarily due to their high aspect ratio coupled with high thermal and electrical conductivities. Consequently, CNT polymer composites have been extensively investigated for various applications, owing to their light weight and processibility. However, there have been several issues affecting the utilization of CNTs, such as aggregation (bundling) which leads to a non-uniform dispersion and poor interfacial bonding of the CNTs with the polymer, resulting in variation in composite performance, along with the additional issue of high cost of CNTs. Description: In this article, recent research and patents for polymer composites containing carbon nanomaterial are presented and summarized. In addition, a rationale for optimally designed carbon nanotube polymer composites and their applications are suggested. Above the electrical percolation threshold, a transition from insulator to conductor occurs. The percolation threshold values of CNT composite are dependent on filler shape, intrinsic properties of filler, type of polymer, CNT dispersion condition and so on. Different values of percolation threshold CNT polymer composites have been summarized. The difference in percolation threshold and conductivity of CNT composites could be explained by the degree of effective interactions between nanotubes and polymer matrix. The reaction between surface functional groups of CNTs and polymer could contribute to better dispersion of CNTs in polymer matrix. Consequently, it increased the number of electrical networks of CNTs in polymer, resulting in an enhancement of composite conductivity. In addition, to exfoliate nanotubes from heavy bundles, ultrasonication with proper solvent and three roll milling processes were used. Potential reactions of covalent bonding between functionalized CNTs and polymer were suggested based on the above rationale. Conclusion: Through the use of CNT functionalization, high aspect ratio CNTs, and proper fabrication, uniform dispersion of nanotubes in polymer can be achieved leading to considerable improvement in electrical conductivity and electromagnetic interference (EMI) shielding properties.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Sung-Hoon photo

Park, Sung-Hoon
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE