Detailed Information

Cited 21 time in webofscience Cited 22 time in scopus
Metadata Downloads

Preparation and characterization of PtIr alloy dendritic nanostructures with superior electrochemical activity and stability in oxygen reduction and ethanol oxidation reactions

Authors
Lee, Young-WooHwang, Eui-TakKwak, Da-HeePark, Kyung-Won
Issue Date
Jan-2016
Publisher
ROYAL SOC CHEMISTRY
Citation
CATALYSIS SCIENCE & TECHNOLOGY, v.6, no.2, pp.569 - 576
Journal Title
CATALYSIS SCIENCE & TECHNOLOGY
Volume
6
Number
2
Start Page
569
End Page
576
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/8509
DOI
10.1039/c5cy01054c
ISSN
2044-4753
Abstract
Pt-based alloy dendritic nanostructures have been known to exhibit improved electrocatalytic properties due to their particularly modulated surface and electronic structures favorable for alcohol oxidation and oxygen reduction reactions. We prepared PtIr alloy nanoparticles (NPs) with a dendritic shape as three-dimensional structures for enhanced ethanol oxidation reaction (EOR) and oxygen reduction reaction (ORR) by thermal decomposition in the presence of cetyltrimethylammonium chloride (CTAC) as surfactant. The PtIr alloy dendritic nanoparticles show a well-defined three-dimensional alloy nanostructure analyzed using TEM, XPS, and XRD. In particular, the PtIr alloy nanostructures exhibit 2.74 times higher electrochemical active surface areas (EASAs) than commercial Pt/C. Also, in the EOR, the PtIr alloy dendritic electrocatalyst exhibits excellent electrochemical properties, including high I-f/I-b ratio and current density, high negative onset potential, and good electrochemical stability compared to the commercial Pt/C electrocatalyst. In addition, the PtIr alloy dendritic electrocatalyst exhibits enhanced electrochemical activity and stability, i.e., 3.19 times higher specific mass-kinetic activity than the commercial Pt/C electrocatalyst, and an 8 mV reduction of the half-wave potential in the ORR. The improved electrochemical activity and stability of the PtIr alloy dendritic electrocatalyst in the EOR and ORR are ascribed to the dendritic structures, the surface state of the electrocatalyst, and the controlled electronic structure due to the Ir atoms in the alloy phase.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher PARK, KYUNG WON photo

PARK, KYUNG WON
College of Engineering (Department of Chemical)
Read more

Altmetrics

Total Views & Downloads

BROWSE