Detailed Information

Cited 17 time in webofscience Cited 18 time in scopus
Metadata Downloads

Rad51 Regulates Cell Cycle Progression by Preserving G2/M Transition in Mouse Embryonic Stem Cellsopen access

Authors
Yoon, Sang-WookKim, Dae-KwanKim, Keun PilPark, Kyung-Soon
Issue Date
Nov-2014
Publisher
MARY ANN LIEBERT, INC
Citation
STEM CELLS AND DEVELOPMENT, v.23, no.22, pp 2700 - 2711
Pages
12
Journal Title
STEM CELLS AND DEVELOPMENT
Volume
23
Number
22
Start Page
2700
End Page
2711
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11596
DOI
10.1089/scd.2014.0129
ISSN
1547-3287
1557-8534
Abstract
Homologous recombination (HR) maintains genomic integrity against DNA replication stress and deleterious lesions, such as double-strand breaks (DSBs). Rad51 recombinase is critical for HR events that mediate the exchange of genetic information between parental chromosomes in eukaryotes. Additionally, Rad51 and HR accessory factors may facilitate replication fork progression by preventing replication fork collapse and repair DSBs that spontaneously arise during the normal cell cycle. In this study, we demonstrated a novel role for Rad51 during the cell cycle in mouse embryonic stem cells (mESCs). In mESCs, Rad51 was constitutively expressed throughout the cell cycle, and the formation of Rad51 foci increased as the cells entered S phase. Suppression of Rad51 expression caused cells to accumulate at G2/M phase and activated the DNA damage checkpoint, but it did not affect the self-renewal or differentiation capacity of mESCs. Even though Rad51 suppression significantly inhibited the proliferation rate of mESCs, Rad51 suppression did not affect the replication fork progression and speed, indicating that Rad51 repaired DNA damage and promoted DNA replication in S phase through an independent mechanism. In conclusion, Rad51 may contribute to G2/M transition in mESCs, while preserving genomic integrity in global organization of DNA replication fork.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Keun Pil photo

Kim, Keun Pil
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE