Detailed Information

Cited 8 time in webofscience Cited 7 time in scopus
Metadata Downloads

Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cellsopen access

Authors
Kang, Ee-SeulKim, Da-SeulHan, YoojoongSon, HyungbinChung, Yong-HoMin, JunhongKim, Tae-Hyung
Issue Date
Mar-2018
Publisher
MDPI
Keywords
graphene oxide; silica nanoparticles; gold nanoparticles; RGD peptide; differentiation; mesenchymal stem cells; adipose-derived stem cells; osteogenesis
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.19, no.3
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
19
Number
3
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/1166
DOI
10.3390/ijms19030669
ISSN
1422-0067
1422-0067
Abstract
Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD-MAP-C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene-RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle-RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14-21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene-RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.
Files in This Item
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Tae-Hyung photo

Kim, Tae-Hyung
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE