Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces

Authors
Kim, Min-KiSohn, Jeong-wooLee, BongsooKim, Sung-Phil
Issue Date
Feb-2018
Publisher
BMC
Citation
BIOMEDICAL ENGINEERING ONLINE, v.17, no.1
Journal Title
BIOMEDICAL ENGINEERING ONLINE
Volume
17
Number
1
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/1177
DOI
10.1186/s12938-018-0459-7
ISSN
1475-925X
Abstract
Background: Intracortical brain-machine interfaces (BMIs) harness movement information by sensing neuronal activities using chronic microelectrode implants to restore lost functions to patients with paralysis. However, neuronal signals often vary over time, even within a day, forcing one to rebuild a BMI every time they operate it. The term "rebuild" means overall procedures for operating a BMI, such as decoder selection, decoder training, and decoder testing. It gives rise to a practical issue of what decoder should be built for a given neuronal ensemble. This study aims to address it by exploring how decoders' performance varies with the neuronal properties. To extensively explore a range of neuronal properties, we conduct a simulation study. Methods: Focusing on movement direction, we examine several basic neuronal properties, including the signal-to-noise ratio of neurons, the proportion of well-tuned neurons, the uniformity of their preferred directions (PDs), and the non-stationarity of PDs. We investigate the performance of three popular BMI decoders: Kalman filter, optimal linear estimator, and population vector algorithm. Results: Our simulation results showed that decoding performance of all the decoders was affected more by the proportion of well-tuned neurons that their uniformity. Conclusions: Our study suggests a simulated scenario of how to choose a decoder for intracortical BMIs in various neuronal conditions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Energy System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE