Detailed Information

Cited 122 time in webofscience Cited 126 time in scopus
Metadata Downloads

Selective metal deposition at graphene line defects by atomic layer deposition

Authors
Kim, KwanpyoLee, Han-Bo-RamJohnson, Richard W.Tanskanen, Jukka T.Liu, NanKim, Myung-GilPang, ChanghyunAhn, ChiyuiBent, Stacey F.Bao, Zhenan
Issue Date
Sep-2014
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE COMMUNICATIONS, v.5
Journal Title
NATURE COMMUNICATIONS
Volume
5
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11889
DOI
10.1038/ncomms5781
ISSN
2041-1723
Abstract
One-dimensional defects in graphene have a strong influence on its physical properties, such as electrical charge transport and mechanical strength. With enhanced chemical reactivity, such defects may also allow us to selectively functionalize the material and systematically tune the properties of graphene. Here we demonstrate the selective deposition of metal at chemical vapour deposited graphene's line defects, notably grain boundaries, by atomic layer deposition. Atomic layer deposition allows us to deposit Pt predominantly on graphene's grain boundaries, folds and cracks due to the enhanced chemical reactivity of these line defects, which is directly confirmed by transmission electron microscopy imaging. The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications. Using Pt-graphene hybrid structures, we demonstrate high-performance hydrogen gas sensors at room temperature and show its advantages over other evaporative Pt deposition methods, in which Pt decorates the graphene surface non-selectively.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE