Detailed Information

Cited 11 time in webofscience Cited 13 time in scopus
Metadata Downloads

Decomposition of hydrogen sulfide (H2S) on Ni(100) and Ni3Al(100) surfaces from first-principles

Authors
Hernandez, Juan MartinLim, Dong-HeeHoang Viet Phuc NguyenYoon, Sung-PilHan, JongheeNam, Suk WooYoon, Chang WonKim, Soo-KilHam, Hyung Chul
Issue Date
Aug-2014
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Ni3Al; (100) facet; H2S; Ligand; Density functional theory
Citation
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.39, no.23, pp 12251 - 12258
Pages
8
Journal Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume
39
Number
23
Start Page
12251
End Page
12258
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/11935
DOI
10.1016/j.ijhydene.2014.03.064
ISSN
0360-3199
1879-3487
Abstract
Spin-polarized density functional theory studies of hydrogen sulfide (H2S) adsorption and decomposition on Ni(100) and Ni3Al(100) surfaces were conducted to understand the aluminum (Al) alloying effect on H2S dissociation. For such purpose, we first determined the near surface structure of fully ordered Ni3Al alloy along the [100] direction by calculating the Al segregation energy to the surface and then examined the adsorption energies of the adsorbates (H2S, HS, S, and H) and the activation barriers for the H2S and HS decomposition by using Climbing Image-Nudged Elastic Band method. We found that regardless of the way to terminate the surface, Al atom in bimetallic Ni3Al(100) tends to exist in the first surface layer, rather than in the second or third layer, and the Ni3Al(100) surface can substantially retard the H2S decomposition by reducing the adsorption energy of sulfur compounds compared to the pure Ni(100) case. Finally, we presented how the Al in Ni3Al modifies the activity of surface Ni atoms toward the sulfur compounds by calculating the local density of states and charge distribution in alloying components. This work hints the importance of knowing how to properly tailor the reactivity of Ni based materials to enhance the resistance for sulfur poisoning. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Soo Kil photo

Kim, Soo Kil
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE