Detailed Information

Cited 16 time in webofscience Cited 13 time in scopus
Metadata Downloads

Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorphaopen access

Authors
Sohn, Min JeongYoo, Su JinOh, Doo-ByoungKwon, OhsukLee, Sang YupSibirny, Andriy A.Kang, Hyun Ah
Issue Date
Jun-2014
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.9, no.6
Journal Title
PLOS ONE
Volume
9
Number
6
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/12131
DOI
10.1371/journal.pone.0100725
ISSN
1932-6203
Abstract
In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast Hansenula polymorpha, which has attracted much attention as an industrial yeast strain for various biotechnological applications. Quite interestingly, the detailed sulfur metabolic pathway of H. polymorpha, which was reconstructed based on combined analyses of the genome sequences and validation by systematic gene deletion experiments, revealed the absence of de novo synthesis of homocysteine from inorganic sulfur in this yeast. Thus, the direct biosynthesis of cysteine from sulfide is the only pathway of synthesizing sulfur amino acids from inorganic sulfur in H. polymorpha, despite the presence of both directions of transsulfuration pathway Moreover, only cysteine, but no other sulfur amino acid, was able to repress the expression of a subset of sulfur genes, suggesting its central and exclusive role in the control of H. polymorpha sulfur metabolism. S-35-Cys was more efficiently incorporated into intracellular sulfur compounds such as glutathione than S-35-Met in H. polymorpha, further supporting the cysteine-centered sulfur pathway. This is the first report on the novel features of H. polymorpha sulfur metabolic pathway, which are noticeably distinct from those of other yeast and filamentous fungal species.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hyun Ah photo

Kang, Hyun Ah
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE