Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Neural network based material models with Bayesian framework for integrated materials and product design

Authors
Wimarshana, BuddhiRyu, JejunChoi, Hae-Jin
Issue Date
Jan-2014
Publisher
KOREAN SOC PRECISION ENG
Keywords
Materials design; Integrated materials and products design; Artificial neural network; Bayesian framework; Modeling uncertainty
Citation
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, v.15, no.1, pp 75 - 81
Pages
7
Journal Title
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
Volume
15
Number
1
Start Page
75
End Page
81
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/12628
DOI
10.1007/s12541-013-0307-4
ISSN
2234-7593
2005-4602
Abstract
Integrated Materials and Products Design (IMPD) is a new system-based design approach. This emerging method focuses on designing a product and its materials at the same time to further enhance product performances. In the process of IMPD, material models that predict material properties with given inputs of material processing parameters play an important role in numerous design optimization iteration loops. In this work, a material model for predicting the tensile strength of austenitic stainless steels is developed based on the neural network with Bayesian framework. Using the Bayesian framework, we quantify the degree of uncertainty, originated from lack of data or the architecture of employed neural network, in the prediction of material properties. This quantification is very important for the later use in robust design optimization. Developed material model is validated based on the two different types of austenitic stainless steels, AISI 316L and AISI 347H, subjected to prior heat treatment processes. Comparing the predicted results with experimental results, we observe our material model predicts the tensile strengths of AISI 316L steels heattreated at various temperatures with higher levels of accuracy. The predicted tensile strengths of AISI 347H steels tested at different temperatures are reasonably close to the experimental results.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hae Jin photo

Choi, Hae Jin
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE