Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

토양 내 질소 증가가 미생물 활성 및 식물체의 분해에 미치는 영향Effects of Soil Nitrogen Addition on Microbial Activities and Litter Decomposition. Chae, Hee Myung,

Authors
채희명이상훈차상섭심재국
Issue Date
2013
Publisher
한국하천호수학회
Keywords
decomposition; microbial biomass; soil enzyme; soil nitrogen
Citation
생태와 환경, v.46, no.2, pp 276 - 288
Pages
13
Journal Title
생태와 환경
Volume
46
Number
2
Start Page
276
End Page
288
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/19775
ISSN
2288-1115
2288-1123
Abstract
The present study investigates the effects of elevated soil nitrogen on growth and decomposition of Oryza sativa shoots. The plants were cultivated in greenhouse until leaf senescence and the total biomass of the plant increased 1.9 times at nitrogen addition plot. Total C and N content in shoot increased; however, lignin, C/N, and lignin/N levels decreased in the N-treated soil. The shoot litters collected from the control and N-treated soil were tested for decay and microbial biomass, CO₂ evolution, and enzyme activities during decomposition on the control and N-treated soil at 25˚C microcosm. The remaining mass of the shoot litter was approximately 6% higher in the litter collected from the control soil (53.0%) than the litter collected from high N-treated soil (47.1%). However, the high N-containing litter exhibited faster decay in the control soil than in the N-treated soil. The litter containing high N, low C/N, and low lignin/N showed a higher decomposition rate than that of low quality litter. The N-addition showed decreased microbial biomass C and dehydrogenase activity in soil; however, it exhibited high microbial biomass N and urease activity in soil. When the high N-containing litter decays on the N-treated soil, the microbial biomass C increased rapidly at the initial phase of decomposition and decreased thereafter, and dehydrogenase activity was less that of other treatment; however, there was no effect on the microbial biomass N. The urease in the decomposing litter was highest during the early decomposition stage and dramatically decreased thereafter. The present findings suggested that the N-addition increased N content in litter, but inhibited the decomposition process of above-ground biomass in terrestrial ecosystems.
The present study investigates the effects of elevated soil nitrogen on growth and decomposition of Oryza sativa shoots. The plants were cultivated in greenhouse until leaf senescence and the total biomass of the plant increased 1.9 times at nitrogen addition plot. Total C and N content in shoot increased; however, lignin, C/N, and lignin/N levels decreased in the N-treated soil. The shoot litters collected from the control and N-treated soil were tested for decay and microbial biomass, CO₂ evolution, and enzyme activities during decomposition on the control and N-treated soil at 25˚C microcosm. The remaining mass of the shoot litter was approximately 6% higher in the litter collected from the control soil (53.0%) than the litter collected from high N-treated soil (47.1%). However, the high N-containing litter exhibited faster decay in the control soil than in the N-treated soil. The litter containing high N, low C/N, and low lignin/N showed a higher decomposition rate than that of low quality litter. The N-addition showed decreased microbial biomass C and dehydrogenase activity in soil; however, it exhibited high microbial biomass N and urease activity in soil. When the high N-containing litter decays on the N-treated soil, the microbial biomass C increased rapidly at the initial phase of decomposition and decreased thereafter, and dehydrogenase activity was less that of other treatment; however, there was no effect on the microbial biomass N. The urease in the decomposing litter was highest during the early decomposition stage and dramatically decreased thereafter. The present findings suggested that the N-addition increased N content in litter, but inhibited the decomposition process of above-ground biomass in terrestrial ecosystems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE