Detailed Information

Cited 16 time in webofscience Cited 0 time in scopus
Metadata Downloads

Behavioral model for magnetorheological fluid under a magnetic field using Lekner summation method

Authors
Jang, Kyung-InSeok, JongwonMin, Byung-KwonLee, Sang Jo
Issue Date
May-2009
Publisher
ELSEVIER SCIENCE BV
Keywords
Magnetorheological fluid; Dipolar interaction energy; Behavioral model; Lekner summation method
Citation
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, v.321, no.9, pp 1167 - 1176
Pages
10
Journal Title
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume
321
Number
9
Start Page
1167
End Page
1176
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/23199
DOI
10.1016/j.jmmm.2008.10.046
ISSN
0304-8853
1873-4766
Abstract
Magnetorheological (MR) fluid is used for various applications due to its controllable viscosity. To predict the behavior of MR fluid under certain three-dimensional (3D) magnetic and shear strain fields, it is essential to model the fluid in an appropriate manner. The behavioral models used in the previous research, however, have serious limitations because most of them oversimplify the inter-particle interactions and employ assumptions valid only under specific geometric configurations and field conditions. In this study, a new model that can predict the behavior of MR fluid under arbitrary 3D magnetic and shear strain fields is proposed. The present work considers an MR fluid configured as a 3D infinite lattice structure. Using the proposed model, the shear stress components themselves, not the dipolar interaction energy, are calculated directly to avoid the mathematical singularity otherwise encountered. The resulting stress functions of the proposed model are transformed into rapidly convergent functions using the Lekner summation method. Finally, the characteristics of the stiffened MR fluid under a magnetic field are investigated using the transformed functions. Numerical computations on the original and transformed functions are performed and compared under selected conditions to ensure the validity and prove the high convergence efficiency of the proposed model. (C) 2008 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seok, Jong Won photo

Seok, Jong Won
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE