Detailed Information

Cited 94 time in webofscience Cited 96 time in scopus
Metadata Downloads

Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner

Authors
Park, Tae JungLee, Sang YupLee, Seok JaePark, Jong PilYang, Kwang SukLee, Kyung-BokKo, SunghoPark, Jong BaeKim, TaekeunKim, Seong KyuShin, Yong BumChung, Bong HyunKu, Su-JinKim, Do HyunChoi, Insung S.
Issue Date
Oct-2006
Publisher
AMER CHEMICAL SOC
Citation
ANALYTICAL CHEMISTRY, v.78, no.20, pp 7197 - 7205
Pages
9
Journal Title
ANALYTICAL CHEMISTRY
Volume
78
Number
20
Start Page
7197
End Page
7205
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/27642
DOI
10.1021/ac060976f
ISSN
0003-2700
1520-6882
Abstract
An efficient strategy for immobilizing proteins on a gold surface was developed by employing the gold binding polypeptide (GBP) as a fusion partner. Using the enhanced green fluorescent protein (EGFP), severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVme), and core streptavidin (cSA) of Streptomyces avidinii as model proteins, specific immobilization of the GBP-fusion proteins onto the gold nanoparticles and generation of protein nanopatterns on the bare gold surface were demonstrated. The GBP-fused SCVme bound to gold nanoparticles successfully interacted with its antibody and showed changes in absorbance and color, allowing efficient diagnosis of SARS-CoV. The fusion proteins could be successfully immobilized on the gold surface by nanopatterning and microcontact printing as examined by atomic force microscopy and surface plasmon resonance analysis. The poly( dimethylsiloxane) microfluidic channels were created on the gold surface and were used for antigen-antibody and DNA-DNA interaction studies. Specific immobilization of GBP-EGFP fusion protein and its interaction with the antibody in the microchannels could be demonstrated. By immobilizing the DNA probe through the use of GBP-fused cSA, specific hybridization of the target DNA prepared from Salmonella could also be achieved. The GBP-fusion method allows immobilization of proteins onto the gold surface without surface modification and in bioactive forms suitable for studying protein-protein, DNA-DNA, and other biomolecular interaction studies. Furthermore, these studies can be carried out in a microfluidic system, which allows high-throughput analysis of biomolecular interactions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Jung photo

Park, Tae Jung
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE