Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Role of mechanical and thermal damage in pericapsular inflammatory response to injectable silicone in a rabbit modelopen access

Authors
Seok, J.Woo, S.H.Kwon, T.R.Kim, J.H.Jeong, G.J.Li, K.Kim, W.S.Kim, B.J.
Issue Date
May-2019
Publisher
Public Library of Science
Citation
PLoS ONE, v.14, no.5
Journal Title
PLoS ONE
Volume
14
Number
5
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/33190
DOI
10.1371/journal.pone.0216926
ISSN
1932-6203
Abstract
Silicone is used widely for tissue augmentation in humans. However, late complications, such as delayed inflammation and capsular contracture, remain uncharacterized, despite their importance. In the present study, we aimed to determine whether mechanical and thermal damage induce capsular inflammation around a foreign body, and elucidate the biological mechanism underlying this phenomenon. We injected silicone into the subcutaneous layer of the skin of New Zealand white rabbits. The rabbits were divided into two groups: the control group received no treatment; in the experimental group, external force was applied near the injection silicone using high-intensity focused ultrasound (HIFU). Tissues near the injected silicone were harvested from both groups on Days 4, 7, and 30 after HIFU treatment for comparative analysis. Visual and histological examinations showed clearly increased inflammation in the experimental group compared with that in the control group. Furthermore, capsular tissue from the experimental group displayed markedly increased collagen production. Immunofluorescence revealed marked activation of macrophages in the early stages of inflammation (Days 4 and 7 after HIFU treatment), which decreased on Day 30. Assessment of cytokine activation showed significantly increased expression of heat shock protein (HSP)27, HSP60, HSP70, toll-like receptor (TLR)2, TLR4, and interleukin-8 in the experimental group. The expression of transforming growth factor-β1 did not increase significantly in the experimental group. In conclusion, damage to tissues around the injected silicone induced capsular inflammation. Macrophages and damage-associated molecular pattern molecules were involved in the early stages of inflammation. HSP release activated TLRs, which subsequently activated innate immunity and induced the inflammatory response. © 2019 Seok et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Files in This Item
Appears in
Collections
College of Medicine > College of Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Beom Joon photo

Kim, Beom Joon
의과대학 (의학부(임상-서울))
Read more

Altmetrics

Total Views & Downloads

BROWSE