Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

In operando studies of CO oxidation on epitaxial SrCoO2.5+delta thin films

Full metadata record
DC Field Value Language
dc.contributor.authorFolkman, Chad M.-
dc.contributor.authorChang, Seo Hyoung-
dc.contributor.authorJeen, Hyoungjeen-
dc.contributor.authorPerret, Edith-
dc.contributor.authorBaldo, Peter M.-
dc.contributor.authorThompson, Carol-
dc.contributor.authorEastman, Jeffrey A.-
dc.contributor.authorLee, Ho Nyung-
dc.contributor.authorFong, Dillon D.-
dc.date.available2020-04-23T08:22:00Z-
dc.date.issued2019-08-
dc.identifier.issn2166-532X-
dc.identifier.issn2166-532X-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/39001-
dc.description.abstractThe high abundance and fast kinetics of select transition metal oxide catalysts are attractive features for many chemical and electrochemical device applications. However, the activity of such catalysts can be accompanied by phase instabilities that prevent their widespread usage. Furthermore, complexities associated with variations in phase behavior and oxygen stoichiometry have hindered studies on the true origins of catalytic activity. Here, we explore the interactions between activity, phase stability, and microstructure using in operando synchrotron X-ray techniques and gas chromatography/mass spectroscopy (GCMS) to probe the behavior of model SrCoO2.5+delta (SCO) catalysts. Pulsed laser deposition was used to prepare SCO thin films on (001) SrTiO3, (111) SrTiO3, and pseudocubic (001) DyScO3 substrates. The GCMS catalytic measurements were performed with a custom-built microreactor compatible with a synchrotron X-ray diffractometer at the Advanced Photon Source. The activity for carbon monoxide oxidation was determined as a function of temperature from 500 degrees C to 800 degrees C. We show that the SrCoO2.5+delta films are active for CO oxidation, most likely by direct reaction with lattice oxygen; consequently, the activity was observed to increase as the films become less stable, with the most active film being the one exhibiting the lowest surface and crystal quality. All films decompose at high temperatures, with in operando diffraction indicating the gradual formation of Sr-rich hexagonal and CoO phases. We find that real-time studies of model oxide systems with synchrotron X-rays is a powerful means of gaining insight into the varied processes taking place at catalytic surfaces. (c) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER INST PHYSICS-
dc.titleIn operando studies of CO oxidation on epitaxial SrCoO2.5+delta thin films-
dc.typeArticle-
dc.identifier.doi10.1063/1.5108957-
dc.identifier.bibliographicCitationAPL MATERIALS, v.7, no.8-
dc.description.isOpenAccessY-
dc.identifier.wosid000483883800014-
dc.citation.number8-
dc.citation.titleAPL MATERIALS-
dc.citation.volume7-
dc.type.docTypeArticle-
dc.publisher.location미국-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusPEROVSKITES-
dc.subject.keywordPlusCATALYSIS-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusBROWNMILLERITE-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chang, Seo Hyoung photo

Chang, Seo Hyoung
자연과학대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE