Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Core N-glycan structures are critical for the pathogenicity of cryptococcus neoformans by modulating host cell deathopen access

Authors
Thak, Eun JungLee, Su-BinXu-Vanpala, ShengjieLee, Dong-JikChung, Seung-YeonBahn, Yong-SunOh, Doo-ByoungShinohara, Mari L.Kang, Hyun Ah
Issue Date
May-2020
Publisher
American Society for Microbiology
Keywords
ALG; Cryptococcus neoformans; Fungal pathogenesis; N-linked protein glycosylation
Citation
mBio, v.11, no.3
Journal Title
mBio
Volume
11
Number
3
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/41945
DOI
10.1128/mBio.00711-20
ISSN
2161-2129
2150-7511
Abstract
Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent ɑ-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetect-able defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was aviru-lent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Fur-thermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent ɑ-1,2-mannosyltransferases and ɑ-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remark-ably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1ß (IL-1ß) were not reduced in the bone marrow-derived dendritic cells obtained from Asc-and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformans. IMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans. Here, we present evi-dence that an intact core N-glycan structure is required for C. neoformans pathoge-nicity by systematically analyzing alg3∆, alg9∆, and alg12∆ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants pro-ducing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents. © 2020 Thak et al.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hyun Ah photo

Kang, Hyun Ah
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE