Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Intensity Dependence of Current-Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells

Authors
Kyaw, Aung Ko KoWang, Dong HwanGupta, VinayLeong, Wei LinKe, LinBazan, Guillermo C.Heeger, Alan J.
Issue Date
May-2013
Publisher
AMER CHEMICAL SOC
Keywords
solution-processed small molecule; bulk heterojunction solar cell; recombination; intensity dependence
Citation
ACS NANO, v.7, no.5, pp 4569 - 4577
Pages
9
Journal Title
ACS NANO
Volume
7
Number
5
Start Page
4569
End Page
4577
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/42170
DOI
10.1021/nn401267s
ISSN
1936-0851
1936-086X
Abstract
Solution-processed small-molecule p-DTS(FBTTh2)(2): PC71BM bulk heterojunction (BHJ) solar cells with power conversion efficiency of 8.01% are demonstrated. The fill factor (FF) is sensitive to the thickness of a calcium layer between the BHJ layer and the Al cathode; for 20 nm Ca thickness, the FF is 73%, the highest value reported for an organic solar cell. The maximum external quantum efficiency exceeds 80%. After correcting for the total absorption In the cell through normal incidence reflectance measurements, the internal quantum efficiency approaches 100% in the spectral range of 600-650 nm and well over 80% across the entire spectral range from 400 to 700 nm. Analysis of the current voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the BHJ solar cells with different thicknesses of the Ca layer. Our analysis reveals that thel J-V curves are dominated by first-order recombination from the short-circuit condition to the maximum power point and evolve to bimolecular recombination in the range of voltage from the maximum power point to the open-circuit condition in the optimized device with a Ca thickness of 20 nm. In addition, the normalized photocurrent density curves reveal that the charge collection probability remains high; about 90% of charges are collected even at the maximum power point. The dominance of bimolecular recombination only when approaching open circuit, the lack of Shockley Read Hall recombination at open circuit, and the high charge collection probability (97.6% at the short circuit and constant over wide range of applied voltage) lead to the high fill factor.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Wang, Dong Hwan photo

Wang, Dong Hwan
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE