Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Responses of human adipose-derived stem cells to interstitial level of extremely low shear flows regarding differentiation, morphology, and proliferation

Authors
Kim, Sung-HwanAhn, KihoonPark, Joong Yull
Issue Date
Jun-2017
Publisher
ROYAL SOC CHEMISTRY
Citation
LAB ON A CHIP, v.17, no.12, pp 2115 - 2124
Pages
10
Journal Title
LAB ON A CHIP
Volume
17
Number
12
Start Page
2115
End Page
2124
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/4324
DOI
10.1039/c7lc00371d
ISSN
1473-0197
1473-0189
Abstract
Human cells encounter a range of shear stress levels in situ and this natural variability in shear stress implies that realistic investigations of cell type characteristics may depend on nontrivial shear stress models. Human adipose-derived stem cells (hASCs) differentiate near the blood capillary vessels where interstitial flows predominate. However, the effects of interstitial levels of shear on hASCs are not fully understood. In this study, we propose a microfluidic shear generation system, in which a gradient distribution of the interstitial level of shear flow is created to investigate the effects of interstitial-level shear flow on hASCs. To generate such a gradient profile of interstitial-level shear stress, we fabricated a semicircle-shaped microfluidic channel, and generated an extremely low flow using an osmosis-driven pump. Changes to hASC morphology, proliferation, and differentiation were observed under shear stresses of 1.8 x 10(-3) -2.4 x 10(-3) Pa. At higher shear stresses, we found higher proliferation rates, stronger actin structures, and lower differentiation. We also conducted computational simulations of a monolayer culture, which showed that the shear stress level even on a single cell varies owing to the change of the cell thickness between the pseudopodia and the nucleus. We found that hASCs detectably respond to extremely low levels of shear flow, above a threshold of similar to 2.0 x 10(-3) Pa. Our microplatform may be useful for quantitating biological responses and function changes of other stem cells and cancer cells to interstitial-level shear flows.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Joong Yull photo

Park, Joong Yull
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE