Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Recent advances in biomolecule-nanomaterial heterolayer-based charge storage devices for bioelectronic applicationsopen access

Authors
Lee, TaekKim, SoominKim, JinmyeongPark, Sang-ChanYoon, JinhoPark, ChulhwanSohn, HiesangAhn, Jae-HyukMin, Junhong
Issue Date
Aug-2020
Publisher
MDPI AG
Keywords
Biomemristor; Biomolecule; Charge storage device; Field-effect transistor; Heterolayer; Nanomaterial
Citation
Materials, v.13, no.16
Journal Title
Materials
Volume
13
Number
16
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/43464
DOI
10.3390/MA13163520
ISSN
1996-1944
1996-1944
Abstract
With the acceleration of the Fourth Industrial Revolution, the development of information and communications technology requires innovative information storage devices and processing devices with low power and ultrahigh stability. Accordingly, bioelectronic devices have gained considerable attention as a promising alternative to silicon-based devices because of their various applications, including human-body-attached devices, biomaterial-based computation systems, and biomaterial-nanomaterial hybrid-based charge storage devices. Nanomaterial-based charge storage devices have witnessed considerable development owing to their similarity to conventional charge storage devices and their ease of applicability. The introduction of a biomaterial-to-nanomaterial-based system using a combination of biomolecules and nanostructures provides outstanding electrochemical, electrical, and optical properties that can be applied to the fabrication of charge storage devices. Here, we describe the recent advances in charge storage devices containing a biomolecule and nanoparticle heterolayer including (1) electrical resistive charge storage devices, (2) electrochemical biomemory devices, (3) field-effect transistors, and (4) biomemristors. Progress in biomolecule-nanomaterial heterolayer-based charge storage devices will lead to unprecedented opportunities for the integration of information and communications technology, biotechnology, and nanotechnology for the Fourth Industrial Revolution. © 2020 by the authors.
Files in This Item
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Min, Junhong photo

Min, Junhong
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE