Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Application of Fermi hypernetted-chain theory to spin-polarized higher-order fractional quantum Hall states

Authors
Kim, J. W.Kim, H.Kim, N.
Issue Date
Apr-2017
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.95, no.15
Journal Title
PHYSICAL REVIEW B
Volume
95
Number
15
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/4575
DOI
10.1103/PhysRevB.95.155109
ISSN
2469-9950
2469-9969
Abstract
We apply Fermi hypernetted-chain theory to study the spin polarization of higher-order fractional quantum Hall (FQH) states at filling factors in between the primary FQH sequences,. = p/(q(e)p +/- 1), where q(e) is an even integer and p is a nonzero integer. The filling factors related to the higher-order FQH states include nu = 3/8, 4/11, 5/13, 5/17, 4/13, 6/17, 7/11, and so on. We use a model of strongly interacting fermions with different spin degrees of freedom to explain the states beyond primary FQH sequences. We calculate the correlation energy, the radial distribution function, as well as the static structure function associated with the Halperin wave function adopted for the mixture states of fermions with different spins. The results are comparable with those from the residual interaction between composite fermions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Da Vinci College of General Education > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE