Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Visualization and Quantification of Genetically Adapted Microbial Cells During Preculture

Authors
Kim, Hyun JuJeong, HaeyoungLee, Sang Jun
Issue Date
14-Jul-2021
Publisher
FRONTIERS MEDIA SA
Keywords
adaptation; real-time; visualization; lag phase; Escherichia coli; succinate; BL21(DE3); kgtP
Citation
FRONTIERS IN MICROBIOLOGY, v.12
Journal Title
FRONTIERS IN MICROBIOLOGY
Volume
12
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/48921
DOI
10.3389/fmicb.2021.693464
ISSN
1664-302X
1664-302X
Abstract
As culture history is known to affect the length of the lag phase and microbial cell growth, precultures are often grown in the same medium as the main culture for physiological adaptation and to reduce a prolonged lag time in some microbial cells. To understand the adaptation process of microbial cells during transfer from Luria-Bertani medium to minimal medium, we used the growth of Escherichia coli BL21(DE3) in succinate minimal medium as a model system. We observed that only one or two sequential transfers from minimal medium to fresh minimal medium accelerated the growth rate of BL21(DE3) cells. In addition, the number of large colonies (diameter >= 0.1 cm) on succinate agar increased with the number of transfers. Genome and transcript analyses showed that the C-to-T point mutation in large colony cells converted the inactive promoter of kgtP (known to encode alpha-ketoglutarate permease) to the active form, allowing efficient uptake of exogenous succinate. Moreover, we visualized the occurrence of genetically adapted cells with better fitness in real time and quantified the number of those cells in the microbial population during transfer to the same medium. Fluorescence microscopy showed the occurrence and increase of adapted mutant cells, which contain intracellular KgtP-fused green fluorescent proteins, as a result of the C-to-T mutation in the promoter of a fused kgtP-sfgfp during transfer to fresh medium. Flow cytometry revealed that the proportion of mutant cells increased from 1.75% (first transfer) to 12.16% (second transfer) and finally 70.79% (third transfer), explaining the shortened lag time and accelerated growth rate of BL21(DE3) cells during adaptation to the minimal medium. This study provides new insights into the genetic heterogeneity of microbial populations that aids microbial adaptability in new environments.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Biotechnology & Natural Resource > Department of Systems Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Jun photo

Lee, Sang Jun
생명공학대학 (시스템생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE