Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance Core/Shell of ZnO/TiO2 Nanowire with AgCl-Doped CdSe Quantum Dots Arrays as Electron Transport Layer for Perovskite Solar Cellsopen access

Authors
Kim, Jin MoLee, Bong SooHwang, Sung Won
Issue Date
Sep-2020
Publisher
MDPI AG
Keywords
AgCl-doped CdSe quantum dots; Carrier transport; Electron transport layer; Perovskite solar cells; ZnO/TiO2 nanowire
Citation
Molecules, v.25, no.17
Journal Title
Molecules
Volume
25
Number
17
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/49000
DOI
10.3390/molecules25173969
ISSN
1420-3049
1420-3049
Abstract
Most previous studies of perovskite core/shell structures have been based on ZnO/TiO2 nanowires (NWs), which are not suitable for high photoelectric conversion efficiency. Here, core/shell ZnO/TiO2 NWs with AgCl-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We designed CdSe with AgCl dopants that were synthesized by a colloidal process. An improvement of the recombination barrier (Rct1), due to shell supplementation with AgCl-doped CdSe quantum dots, improved the open circuit voltage, the fill factor, and the adsorption capacity of CH3NH3PbI3 perovskite with NWs. The enhanced cell steady state was attributable to TiO2 with AgCl-doped CdSe QD supplementation. A maximum power conversion efficiency of 15.12% was attained in an atmospheric environment. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 core/shell arrays was investigated to represent the merit of ZnO/TiO2 core/shell arrays as an electron transport layer in effective devices. These results showed an uncomplicated approach for restraining non-radiative recombination loss in hetero-structure core/shell arrays to significantly improve perovskite solar cell performance and increase the effectiveness of photovoltaics. © 2020 by the authors.
Files in This Item
Appears in
Collections
College of Engineering > School of Energy System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE