Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

3D-printed polymer packing structures: Uniformity of morphology and mechanical properties via microprocessing conditions

Authors
Kim, SunghanKorolovych, Volodymyr F.Muhlbauer, Rachel L.Tsukruk, Vladimir V.
Issue Date
20-Nov-2020
Publisher
WILEY
Keywords
mechanical properties; morphology; surfaces and interfaces
Citation
JOURNAL OF APPLIED POLYMER SCIENCE, v.137, no.44
Journal Title
JOURNAL OF APPLIED POLYMER SCIENCE
Volume
137
Number
44
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/52023
DOI
10.1002/app.49381
ISSN
0021-8995
1097-4628
Abstract
Three-dimensional (3D) printing is an attractive approach to fabricate highly porous extremely lightweight structures for architecture antivibrational packaging. We report 3D printing processing of model packaging structures using biodegradable poly(lactic acid) (PLA) as a source material, with acrylonitrile butadiene styrene (ABS) utilized as a common 3D printing source material as a traditional benchmarked material. The effects of printing temperature, speed, and layer morphology on the layer-by-layer 3D-printed structures and their mechanical properties were considered. Three different characteristic morphologies were identified based on printing temperature; the microscopic surface roughness was dependent on the printing speed and layer height. We demonstrate that the mechanical performances and surface properties of 3D-printed PLA structures could be improved by optimization of printing conditions. Specifically, we evaluate that these PLA-based 3D structures printed exhibited better surface qualities and enhanced mechanical performance than traditional ABS-based structures. Results showed that the PLA-based 3D structures possessed the favorable mechanical performance with 34% higher Young's modulus and 23% higher tensile strength in comparison to the ABS-based 3D structures. This study provides guidelines for achieving high-quality 3D-printed lightweight structures, including smooth surfaces and durable mechanical properties, and serves as a framework to create biodegradable 3D-printed parts for human use.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sung Han photo

Kim, Sung Han
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE