Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Brainwave Classification Using Covariance-Based Data Augmentation

Authors
Yang, WonseokNam, Woochul
Issue Date
2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Covariance matrices; Training; Classification algorithms; Correlation; Gallium nitride; Tongue; Task analysis; Artificial data; brain– machine interface; classification accuracy; covariance matrix; data augmentation
Citation
IEEE ACCESS, v.8, pp 211714 - 211722
Pages
9
Journal Title
IEEE ACCESS
Volume
8
Start Page
211714
End Page
211722
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/52477
DOI
10.1109/ACCESS.2020.3040286
ISSN
2169-3536
Abstract
A brain-machine interface (BMI) is a technology that controls machines via brainwaves. In BMI, the performance of brainwave analysis is very important for achieving machine control that reflects the user's intention. One of the main obstacles in this analysis is an insufficient amount of data points because long-term brain signal experiments tend to reduce data quality. Data augmentation methods can be used to overcome this limitation. Recently, several neural network-based data augmentation methods have been developed. However, those methods have several limitations; first, they require considerable computation time because a very large number of parameters must be obtained. Moreover, the neural network based method can suffer from unstable training, which results in quality degradation of artificial data. To address these problems, this paper introduces a method that generates an artificial dataset which has correlation of feature similar to the original dataset. Specifically, after decomposing the covariance matrix for the features into a lower triangular matrix, an artificial dataset can be generated by multiplying the lower triangular matrix by random variables. This method is computationally fast, and the augmentation is stable. When the brainwave data were augmented using this method, classification performance was improved by 1.08%-6.72%. This method focuses on mean, correlation, and not taking into account the other statistical parameters. Since it rapidly generates a large dataset, it can also be useful in other applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Nam, Woo Chul photo

Nam, Woo Chul
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE