Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fracture simulation of SFR metallic fuel pin using finite element damage analysis methodopen accessFracture simulation of SFR metallic fuel pin using fi nite element damage analysis method

Authors
Jung, H.-W.Song, H.-K.Kim, Y.-J.Jerng, D.-W.
Issue Date
Mar-2021
Publisher
Korean Nuclear Society
Keywords
Failure prediction; Fracture simulation; Metallic fuel; Sodium-cooled fast reactor
Citation
Nuclear Engineering and Technology, v.53, no.3, pp 932 - 941
Pages
10
Journal Title
Nuclear Engineering and Technology
Volume
53
Number
3
Start Page
932
End Page
941
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/53605
DOI
10.1016/j.net.2020.08.009
ISSN
1738-5733
Abstract
This paper suggests a fracture simulation method for SFR metallic fuel pin under accident condition. Two major failure mechanisms - creep damage and eutectic penetration - are implemented in the suggested method. To simulate damaged element, stress-reduction concept to reduce stiffness of the damaged element is applied. Using the proposed method, the failure size of cladding can be predicted in addition to the failure time and failure site. To verify the suggested method, Whole-pin furnace (WPF) test and TREAT-M test conducted at Argonne National Laboratory (ANL) are simulated. In all cases, predicted results and experimental results are overall in good agreement. Based on the simulation result, the effect of eutectic-penetration depth representing failure behavior on failure size is studied. © 2020
Files in This Item
Appears in
Collections
College of Engineering > School of Energy System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jerng, Dong Wook photo

Jerng, Dong Wook
공과대학 (에너지시스템 공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE