Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Backstepping Based Super-Twisting Sliding Mode MPPT Control with Differential Flatness Oriented Observer Design for Photovoltaic System

Authors
Khan, RashidKhan, LaiqUllah, ShafaatSami, IrfanRo, Jong-Suk
Issue Date
Sep-2020
Publisher
MDPI
Keywords
backstepping; buck-boost; DC-DC converter; differential flatness approach (DFA); maximum power point tracking (MPPT); photovoltaic (PV); sliding mode control (SMC); super-twisting algorithm (STA)
Citation
ELECTRONICS, v.9, no.9, pp 1 - 30
Pages
30
Journal Title
ELECTRONICS
Volume
9
Number
9
Start Page
1
End Page
30
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/53921
DOI
10.3390/electronics9091543
ISSN
2079-9292
2079-9292
Abstract
The formulation of a maximum power point tracking (MPPT) control strategy plays a vital role in enhancing the inherent low conversion efficiency of a photovoltaic (PV) module. Keeping in view the nonlinear electrical characteristics of the PV module as well as the power electronic interface, in this paper, a hybrid nonlinear sensorless observer based robust backstepping super-twisting sliding mode control (BSTSMC) MPPT strategy is formulated to optimize the electric power extraction from a standalone PV array, connected to a resistive load through a non-inverting DC-DC buck-boost power converter. The reference peak power voltage is generated via the Gaussian process regression (GPR) based probabilistic machine learning approach that is adequately tracked by the proposed MPPT scheme. A generalized super-twisting algorithm (GSTA) based differential flatness approach (DFA) is used to retrieve all the missing system states. The Lyapunov stability theory is used for guaranteeing the stability of the proposed closed-loop MPPT technique. The Matlab/Simulink platform is used for simulation, testing and performance validation of the proposed MPPT strategy under different weather conditions. Its MPPT performance is further compared with the recently proposed benchmark backstepping based MPPT control strategy and the conventional MPPT strategies, namely, sliding mode control (SMC), proportional integral derivative (PID) control and the perturb-and-observe (P&O) algorithm. The proposed technique is found to have a superior tracking performance in terms of offering a fast dynamic response, finite-time convergence, minute chattering, higher tracking accuracy and having more robustness against plant parametric uncertainties, load disturbances and certain time-varying sinusoidal faults occurring in the system.
Files in This Item
Appears in
Collections
College of ICT Engineering > School of Electrical and Electronics Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Roh, Jong Suk photo

Roh, Jong Suk
창의ICT공과대학 (전자전기공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE