Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Homogenization-based optimum design of additively manufactured Voronoi cellular structures

Authors
Do, Q.T.Nguyen, C.H.P.Choi, Y.
Issue Date
Sep-2021
Publisher
Elsevier B.V.
Keywords
Cellular structure; Design for additive manufacturing; Homogenization-based; Topology optimization; Voronoi tessellation
Citation
Additive Manufacturing, v.45
Journal Title
Additive Manufacturing
Volume
45
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/54313
DOI
10.1016/j.addma.2021.102057
ISSN
2214-8604
2214-7810
Abstract
Recently, cellular structures have gained researchers’ attraction owing to their diverse applications. Homogenization-based approaches are mostly applied to the design of cellular structures by using density-variable topology optimization (TO) with customized scaling laws. However, the employment of non-stochastic cellular structures, which is mostly applied in homogenization-based design, poses disadvantages in structural anisotropy and poor transitions between adjacent unit cells. In this study, a cellular structure design method relying on the homogenization-based approach and Voronoi tessellation, a type of stochastic cellular structure, is proposed. The density distribution of a given design domain is derived by performing homogenization-based TO with density variables. The optimized density field is used to derive two-dimensional wall-based (or 2.5D) microstructures by applying Voronoi tessellation and implicit modeling. Further, a novel technique for controlling the Voronoi wall thickness is proposed to effectively reduce the computation cost of Voronoi tessellation. The numerical validation by finite element analysis (FEA) shows the advantage of utilizing the Voronoi cellular structure in terms of structural stability with arbitrary load directions and robustness with local defects. © 2021 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE