Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

Authors
Jeon, Mi YoungKim, DonghunKumar, PrashantLee, Pyung SooRangnekar, NeelBai, PengShete, MeeraElyassi, BahmanLee, Han SeungNarasimharao, KatabathiniBasahel, Sulaiman NasirAl-Thabaiti, ShaeelXu, WenqianCho, Hong JeFetisov, Evgenii O.Thyagarajan, RaghuramDeJaco, Robert F.Fan, WeiMkhoyan, K. AndreSiepmann, J. IljaTsapatsis, Michael
Issue Date
Mar-2017
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE, v.543, no.7647, pp 690 - 694
Pages
5
Journal Title
NATURE
Volume
543
Number
7647
Start Page
690
End Page
694
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/57547
DOI
10.1038/nature21421
ISSN
0028-0836
1476-4687
Abstract
A zeolite with structure type MFI1,2 is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5-0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents(3-5). As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape(5-8). Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared(9) and self-pillared (intergrown)(10) architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications(11-14). Moreover, single (non-intergrown and nonlayered) nanosheets have been used to prepare thin membranes(15,16) that could be used to improve the energy efficiency of separation processes(17). However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI9,15, followed by centrifugation to remove non-exfoliated particles(18). This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Pyung Soo photo

Lee, Pyung Soo
대학원 (지능형에너지산업융합학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE