Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactionsopen access

Authors
Rhee, SangmyungJiang, HongmeiHo, Chin-HanGrinnell, Frederick
Issue Date
Mar-2007
Publisher
NATL ACAD SCIENCES
Keywords
adhesion; cell plasticity; cytoskeleton; extracellular matrix; mechanosignaling
Citation
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.104, no.13, pp 5425 - 5430
Pages
6
Journal Title
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Volume
104
Number
13
Start Page
5425
End Page
5430
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/57712
DOI
10.1073/pnas.0608030104
ISSN
0027-8424
1091-6490
Abstract
Mechanical and physical features of the extracellular environment dramatically impact cell shape. Fibroblasts interacting with 3D relaxed collagen matrices appear much different from cells on 2D collagen-coated surfaces and form dendritic cell extensions that contain microtubule cores and actin-rich tips. We found that interfering with cellular microtubules caused cells in relaxed matrices to remain round and unable to form dendritic extensions, whereas fibroblasts on coverslips formed lamellipodial extensions and were spread completely without microtubules but were unable to become polarized. Fibroblasts in relaxed collagen matrices lack stress fibers, focal adhesions, and focal adhesion signaling. Fibroblasts on collagen-coated coverslips that were unable to develop stress fibers and focal adhesions, because of either adding blebbistatin to the cells or use of soft coverslips, also formed microtubule-dependent dendritic extensions. Conversely, fibroblasts interacting with precontracted collagen matrices developed stress fibers and lamellipodial extensions and required microtubules for polarization but not spreading. Our findings demonstrate an unexpected relationship between the role of microtubules in cell spreading and the tension state of cell-matrix interactions. At a low tension state (absence of stress fibers and focal adhesions) typical of fibroblasts in relaxed collagen matrices, cells spread with dendritic extensions whose formation requires microtubules; at a high tension state (stress fibers and focal adhesions) typical of cells on coverslips, cells spread with lamellipodial extensions and microtubules are required for cell polarization but not for spreading.
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Life Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Rhee, Sang Myung photo

Rhee, Sang Myung
자연과학대학 (생명과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE