Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tunable Ferroelectricity in Van der Waals Layered Antiferroelectric CuCrP2S6

Authors
Cho, KwangheeLee, SeungyeolKalaivanan, RajuSankar, RamanChoi, Kwang-YongPark, Soonyong
Issue Date
Sep-2022
Publisher
John Wiley and Sons Inc
Keywords
antiferroelectrics; ferroelectrics; multiferroics; thiophosphates; van der Waals layered materials
Citation
Advanced Functional Materials, v.32, no.36
Journal Title
Advanced Functional Materials
Volume
32
Number
36
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/59239
DOI
10.1002/adfm.202204214
ISSN
1616-301X
1616-3028
Abstract
Recent success in experimental and theoretical works on metal thiophosphates (MTPs) paved the way to add multiple functionalities of complex oxides, such as ferroelectricity, in 2D materials. To realize multiferroicity and magnetoelectric coupling on layered van der Waals materials, incorporating magnetic ions in the ferroelectric framework is desirable. Unfortunately, replacing the metal ion with a magnetic one in MTPs results in antiferroelectricity in which spontaneous macroscopic polarization is absent. Herein, the emergence of a tunable local ferroelectric state in antiferroelectric CuCrP2S6 possessing magnetic Cr3+ ion is reported. The spontaneous macroscopic polarization is observed, which is switchable by an external poling field through controlling a defect-dipole polarization in the quasi-antipolar state. The observations suggest that the formation of defect dipoles, which is facilitated by an order-disorder-type structural transition, is likely related to a metastable Cu site within the van der Waals gap and therefore is a smoking gun of the existence of a uniaxial quadruple potential well. The interaction between the defect-dipole polarization and dipoles in the antipolar matrix may lead to the emerging local ferroelectricity in antiferroelectric CuCrP2S6. The findings suggest a possibility of utilizing the local ferroelectricity of multiferroic MTPs for novel 2D applications. © 2022 Wiley-VCH GmbH.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Soon Yong photo

Park, Soon Yong
자연과학대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE