Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications

Authors
Oh, J.Lim, E.Chun, J.Jo, C.
Issue Date
Feb-2022
Publisher
Elsevier B.V.
Keywords
Ammonium fluoride; Cathode; Lithium ion batteries; Nanocomposites; Nickel fluorides; Porous carbon
Citation
Journal of Power Sources, v.521
Journal Title
Journal of Power Sources
Volume
521
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/61618
DOI
10.1016/j.jpowsour.2021.230935
ISSN
0378-7753
1873-2755
Abstract
Metal fluoride cathode materials, which are cost-effective and have large theoretical capacities, can be used in lithium-ion batteries (LIBs) to reduce the cost of these batteries. However, they have intrinsically low electrical conductivity and high overpotential. Herein, we report a bottom-up approach to synthesize NiF2/porous carbon (NPC) nanocomposites using an ammonium fluoride (NH4F) treatment. In this process the nickel precursor in the porous carbon is fluorinated under the solventless condition without hazardous reagents; thus, lower toxicity and higher yield compared to those of traditional methods can be achieved. Furthermore, we demonstrate the formation mechanism of NiF2 according to the reaction temperature. As a cathode material for LIBs, NPC nanocomposites exhibit an outstanding initial reversible capacity of 830 mAh g−1 at a current density of 50 mA g−1 and excellent rate performance of 487 mAh g−1 at a high current density of 1000 mA g−1. These capacities are much larger than those of the intercalation-based cathodes. The successful preparation of NPC nanocomposites may facilitate the use of metal fluorides as LIB cathode materials. © 2021 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE