Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers

Authors
Cherif, A.Nebbali, R.Sheffield, J.W.Doner, N.Sen, F.
Issue Date
29-Oct-2021
Publisher
Elsevier Ltd
Keywords
Catalytic combustion; CFD; Chemical kinetics; Coated catalytic patterns; Hydrogen production; Steam methane reforming
Citation
International Journal of Hydrogen Energy, v.46, no.75, pp 37521 - 37532
Pages
12
Journal Title
International Journal of Hydrogen Energy
Volume
46
Number
75
Start Page
37521
End Page
37532
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/62114
DOI
10.1016/j.ijhydene.2021.04.032
ISSN
0360-3199
1879-3487
Abstract
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process. © 2021 Hydrogen Energy Publications LLC
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE