Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crumpled graphene paper for high power sodium battery anode

Authors
Yun, Young SooPark, Young-UkChang, Sung-JinKim, Byung HoonChoi, JaewonWang, JunjieZhang, DingBraun, Paul V.Jin, Hyoung-JoonKang, Kisuk
Issue Date
Apr-2016
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.99, pp 658 - 664
Pages
7
Journal Title
CARBON
Volume
99
Start Page
658
End Page
664
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/64269
DOI
10.1016/j.carbon.2015.12.047
ISSN
0008-6223
1873-3891
Abstract
Graphene-based electrodes typically form a compact uniaxially oriented stacked structure during electrode preparation due to the highly anisotropic morphology. This leads to limited diffusion paths for the insertion of Li or Na when used as electrodes in rechargeable batteries. Here, we demonstrate that self-standing electrodes formed of randomly folded and/or crumpled graphene nanosheets can be obtained via a simple modified reduction process, and that the crumpled structure can significantly increase the power capability of graphene-based anodes of sodium-ion batteries. These electrodes can deliver a power density of approximately 20,000 W kg(-1), which surpasses the Li storage capability of conventional graphene paper electrodes. Moreover, the specific capacity was stably maintained without a binder, conductive agent, or substrate for more than 500 charge/discharge cycles and 1000 cycles of repeated bending. (C) 2015 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE