Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrical conductivity enhancement of epitaxially grown TiN thin films

Full metadata record
DC Field Value Language
dc.contributor.authorKhim, Yeong Gwang-
dc.contributor.authorPark, Beomjin-
dc.contributor.authorHeo, Jin Eun-
dc.contributor.authorKhim, Young Hun-
dc.contributor.authorKhim, Young Rok-
dc.contributor.authorGu, Minseon-
dc.contributor.authorRhee, Tae Gyu-
dc.contributor.authorChang, Seo Hyoung-
dc.contributor.authorHan, Moonsup-
dc.contributor.authorChang, Young Jun-
dc.date.accessioned2023-03-27T04:40:22Z-
dc.date.available2023-03-27T04:40:22Z-
dc.date.issued2023-03-
dc.identifier.issn0374-4884-
dc.identifier.issn1976-8524-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/66345-
dc.description.abstractTitanium nitride (TiN) presents superior electrical conductivity with mechanical and chemical stability and compatibility with the semiconductor fabrication process. Here, we fabricated epitaxial and polycrystalline TiN (111) thin films on MgO (111), sapphire (001), and mica substrates at 640℃ and room temperature by using a DC sputtering, respectively. The epitaxial films show less amount of surface oxidation than the polycrystalline ones grown at room temperature. The epitaxial films show drastically reduced resistivity (~ 30 micro-ohm-cm), much smaller than the polycrystalline films. Temperature-dependent resistivity measurements show a nearly monotonic temperature slope down to low temperature. These results demonstrate that high-temperature growth of TiN thin films leads to significant enhancement of electrical conductivity, promising for durable and scalable electrode applications. © 2023, The Korean Physical Society.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisher한국물리학회-
dc.titleElectrical conductivity enhancement of epitaxially grown TiN thin films-
dc.typeArticle-
dc.identifier.doi10.1007/s40042-023-00729-6-
dc.identifier.bibliographicCitationJournal of the Korean Physical Society, v.82, no.5, pp 486 - 490-
dc.identifier.kciidART002939599-
dc.description.isOpenAccessY-
dc.identifier.wosid000934921100003-
dc.identifier.scopusid2-s2.0-85147650367-
dc.citation.endPage490-
dc.citation.number5-
dc.citation.startPage486-
dc.citation.titleJournal of the Korean Physical Society-
dc.citation.volume82-
dc.type.docTypeArticle-
dc.publisher.location대한민국-
dc.subject.keywordAuthorDC sputtering-
dc.subject.keywordAuthorElectrical conductivity-
dc.subject.keywordAuthorElectrode material-
dc.subject.keywordAuthorEpitaxial film-
dc.subject.keywordAuthorTiN-
dc.subject.keywordPlusTITANIUM NITRIDE-
dc.subject.keywordPlusRESISTIVITY-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusDEVICES-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
Files in This Item
Appears in
Collections
College of Natural Sciences > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chang, Seo Hyoung photo

Chang, Seo Hyoung
자연과학대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE