Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Haze removal using deep convolutional neural network for Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) multispectral remote sensing imagery

Full metadata record
DC Field Value Language
dc.contributor.authorYu, Soohwan-
dc.contributor.authorSeo, Doochun-
dc.contributor.authorPaik, Joonki-
dc.date.accessioned2023-07-24T06:40:43Z-
dc.date.available2023-07-24T06:40:43Z-
dc.date.issued2023-08-
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/67247-
dc.description.abstractThis paper presents a convolutional neural network to automatically remove the haze distribution using a single multispectral remote sensing image in the raw file format. To train the proposed dehazing network, we synthesized multispectral hazy images using the haze thickness map (HTM) and relative scattering model representing the wavelength-dependent scattering property of the haze distribution. Since the raw multispectral hazy images have a low dynamic range, we cannot accurately estimate the haze distribution directly from them. To differently impose a proper amount of attention to hazy and haze-free regions, we used the HTM from the contrast-enhanced version of the input hazy image. The proposed dehazing network consists of four sub-networks: (i) shallow feature extraction network (SFEN), (ii) cascaded residual dense block network (CRDBN), (iii) multiscale feature extraction network (MFEN), and (iv) refinement network (RN). The densely connected convolutional layers and local residual learning allow the residual dense block (RDB) to extract the abundant local features, and the cascaded architecture further improves the propagation of the local information and gradients. The MFEN is used to extract multiscale local features representing the hierarchical information for the haze distribution and haze-free region. Experimental results demonstrated that the proposed method can achieve improved dehazing performance on Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) multispectral remote sensing imagery without undesired artifacts. In the sense of quantitative assessment, the proposed method produced improved peak signal-to-noise ratio (PSNR) by 10%, structural similarity index measure (SSIM) by 1%, and spectral angle mapper (SAM) by 19% compared with the existing best method. © 2023 The Author(s)-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleHaze removal using deep convolutional neural network for Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) multispectral remote sensing imagery-
dc.typeArticle-
dc.identifier.doi10.1016/j.engappai.2023.106481-
dc.identifier.bibliographicCitationEngineering Applications of Artificial Intelligence, v.123-
dc.description.isOpenAccessY-
dc.identifier.wosid001013478200001-
dc.identifier.scopusid2-s2.0-85160733687-
dc.citation.titleEngineering Applications of Artificial Intelligence-
dc.citation.volume123-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordAuthorConvolutional neural network-
dc.subject.keywordAuthorHaze removal-
dc.subject.keywordAuthorHaze thickness map-
dc.subject.keywordAuthorImage restoration-
dc.subject.keywordAuthorMultispectral remote sensing image-
dc.subject.keywordPlusTHIN CLOUD REMOVAL-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusVISIBILITY-
dc.subject.keywordPlusCONTRAST-
dc.subject.keywordPlusCHANNEL-
dc.subject.keywordPlusMODEL-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
Graduate School of Advanced Imaging Sciences, Multimedia and Film > Department of Imaging Science and Arts > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Paik, Joon Ki photo

Paik, Joon Ki
첨단영상대학원 (영상학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE