Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteriesopen access

Authors
Ryu, JaechanJang, HaeseongPark, JoohyukYoo, YoungshinPark, MinjoonCho, Jaephil
Issue Date
Sep-2018
Publisher
NATURE PORTFOLIO
Citation
NATURE COMMUNICATIONS, v.9
Journal Title
NATURE COMMUNICATIONS
Volume
9
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/69337
DOI
10.1038/s41467-018-06211-3
ISSN
2041-1723
2041-1723
Abstract
Aluminum-air batteries are promising candidates for next-generation high-energy-density storage, but the inherent limitations hinder their practical use. Here, we show that silver nanoparticle-mediated silver manganate nanoplates are a highly active and chemically stable catalyst for oxygen reduction in alkaline media. By means of atomic-resolved transmission electron microscopy, we find that the formation of stripe patterns on the surface of a silver manganate nanoplate originates from the zigzag atomic arrangement of silver and manganese, creating a high concentration of dislocations in the crystal lattice. This structure can provide high electrical conductivity with low electrode resistance and abundant active sites for ion adsorption. The catalyst exhibits outstanding performance in a flow-based aluminum-air battery, demonstrating high gravimetric and volumetric energy densities of similar to 2552 Wh kg(Al)(-1) and similar to 6890 Wh I-Al(-1) at 100 mA cm(-2), as well as high stability during a mechanical recharging process.
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Haeseong photo

Jang, Haeseong
대학원 (스마트시티학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE