Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Noninvasive and Highly Multiplexed Five-Color Tumor Imaging of Multicore Near-Infrared Resonant Surface-Enhanced Raman Nanoparticles <i>In Vivo</i>

Authors
Yu, Jung HoSteinberg, IdanDavis, Ryan M.Malkovskiy, Andrey, VZlitni, AimenRadzyminski, Rochelle KarinaJung, Kyung OhChung, Daniel TanCuret, Luis DanD'Souza, Aloma L.Chang, EdwinRosenberg, JarrettCampbell, JosFrostig, HadasPark, Seung-minPratx, GuillemLevin, CraigGambhir, Sanjiv S.
Issue Date
Dec-2021
Publisher
AMER CHEMICAL SOC
Keywords
surface-enhanced Raman spectroscopy; surface-enhanced resonant Raman scattering; multiplexed imaging; in vivo imaging; cancer imaging
Citation
ACS NANO, v.15, no.12, pp 19956 - 19969
Pages
14
Journal Title
ACS NANO
Volume
15
Number
12
Start Page
19956
End Page
19969
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/70370
DOI
10.1021/acsnano.1c07470
ISSN
1936-0851
1936-086X
Abstract
In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > College of Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Kyungoh photo

Jung, Kyungoh
의과대학 (의학부(기초))
Read more

Altmetrics

Total Views & Downloads

BROWSE