Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancement of the flame retardant properties of PPS-based composites via the addition of melamine-coated CaAl-LDH fire-retardant filler

Authors
Kim, MinsuKim, Jooheon
Issue Date
Dec-2023
Publisher
Elsevier Ltd
Keywords
CaAl-Layered double hydroxide; Fire retardancy; Polyphenylene sulfide; Thermal conductivity
Citation
European Polymer Journal, v.201
Journal Title
European Polymer Journal
Volume
201
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/70672
DOI
10.1016/j.eurpolymj.2023.112584
ISSN
0014-3057
1873-1945
Abstract
Addressing the global energy crisis and its environmental implications has become a critical challenge, prompting a growing interest in electric vehicles (EVs) as an alternative to fossil fuel-dependent vehicles. Engineering plastics (EPs), with their lightweight and cost-effective properties, are attractive candidates for various applications, including automotive components. However, certain drawbacks, such as poor thermal conductivity and fire resistance, have limited their widespread adoption. In this study, we focus on polyphenylene sulfide (PPS) as a promising super-engineering plastic with high thermal stability and mechanical properties but low thermal conductivity. To enhance its properties, we explore the incorporation of CaAl layered double hydroxide (CaAl-LDH) as a fire-retardant filler, with melamine coating to improve thermal stability. When fabricating composites at high filler ratio (over 30 %), the CaAl-LDH filler thermally decomposes and loses its flame retardant performance. To prevent this, our group attempted to provide thermal stability through melamine coating. The resulting PPS/GF/40 m-CaAl-LDH composites exhibited improved thermal conductivity of 0.37 W/m•K which is almost twice that of the PPS/GF composite, and mechanical properties, along with exceptional flame-retardant behavior, achieving a UL94 V-0 rating and limited oxygen index of 52.74 %. After a fire test, PPS/GF/40 m-CaAl-LDH composites shows improved tensile strength due to the molten m-CaAl-LDH wrapped the entire surfaces protecting from the flames. This research presents a promising strategy for developing high-performance PPS-based materials with applications in diverse industrial fields, including the automotive industry. © 2023 Elsevier Ltd
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jooheon photo

Kim, Jooheon
대학원 (지능형에너지산업융합학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE