Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

One-Pot Synthesis of Double-Network PEG/Collagen Hydrogel for Enhanced Adipogenic Differentiation and Retrieval of Adipose-Derived Stem Cellsopen access

Authors
Lee, HwajungHong, Hye JinAhn, SujeongKim, DohyunKang, Shin HyukCho, KangheeKoh, Won-Gun
Issue Date
Apr-2023
Publisher
MDPI
Keywords
adipose-derived stem cells; one-pot double-crosslinked hydrogel; cell-mediated degradation; adipogenesis; cell retrieval
Citation
POLYMERS, v.15, no.7
Journal Title
POLYMERS
Volume
15
Number
7
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/71830
DOI
10.3390/polym15071777
ISSN
2073-4360
2073-4360
Abstract
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel fabrication methods are desirable for stem cells for efficient encapsulation and to reduce adverse effects on the cells. In this study, we present a one-pot double-crosslinked hydrogel consisting of polyethylene glycol (PEG) and collagen, which can be prepared without the multi-step sequential synthesis of each network, by using bio-orthogonal chemistry. To enhance the adipogenic differentiation efficiency of adipose-derived stem cells (ADSCs), we added degradable components within the hydrogel to regulate matrix stiffness through cell-mediated degradation. Bio-orthogonal reactions used for hydrogel gelation allow rapid gel formation for efficient cell encapsulation without toxic by-products. Furthermore, the hybrid network of synthetic (PEG) and natural (collagen) components demonstrated adequate mechanical strength and higher cell adhesiveness. Therefore, ADSCs grown within this hybrid hydrogel proliferated and functioned better than those grown in the single-crosslinked hydrogel. The degradable elements further improved adipogenesis in ADSCs with dynamic changes in modulus during culture and enabled the retrieval of differentiated cells for potential future applications.
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Shinhyuk photo

Kang, Shinhyuk
의과대학 (의학부(임상-서울))
Read more

Altmetrics

Total Views & Downloads

BROWSE