Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Sungjun-
dc.contributor.authorJung, Sunghun-
dc.contributor.authorKim, Min-Hwi-
dc.contributor.authorChen, Ying-Chen-
dc.contributor.authorChang, Yao-Feng-
dc.contributor.authorRyoo, Kyung-Chang-
dc.contributor.authorCho, Seongjae-
dc.contributor.authorLee, Jong-Ho-
dc.contributor.authorPark, Byung-Gook-
dc.date.accessioned2024-02-19T02:31:01Z-
dc.date.available2024-02-19T02:31:01Z-
dc.date.issued2018-05-
dc.identifier.issn1613-6810-
dc.identifier.issn1613-6829-
dc.identifier.urihttps://scholarworks.bwise.kr/cau/handle/2019.sw.cau/72134-
dc.description.abstractA feasible approach is reported to reduce the switching current and increase the nonlinearity in a complementary metal-oxide-semiconductor (CMOS)-compatible Ti/SiNx/p(+)-Si memristor by simply reducing the cell size down to sub-100 nm. Even though the switching voltages gradually increase with decreasing device size, the reset current is reduced because of the reduced current overshoot effect. The scaled devices (sub-100 nm) exhibit gradual reset switching driven by the electric field, whereas that of the large devices (>= 1 mu m) is driven by Joule heating. For the scaled cell (60 nm), the current levels are tunable by adjusting the reset stop voltage for multilevel cells. It is revealed that the nonlinearity in the low-resistance state is attributed to Fowler-Nordheim tunneling dominating in the high-voltage regime (>= 1 V) for the scaled cells. The experimental findings demonstrate that the scaled metal-nitride-silicon memristor device paves the way to realize CMOS-compatible high-density crosspoint array applications.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleScaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate-
dc.typeArticle-
dc.identifier.doi10.1002/smll.201704062-
dc.identifier.bibliographicCitationSMALL, v.14, no.19-
dc.description.isOpenAccessN-
dc.identifier.wosid000432032800009-
dc.identifier.scopusid2-s2.0-85045768126-
dc.citation.number19-
dc.citation.titleSMALL-
dc.citation.volume14-
dc.type.docTypeArticle-
dc.publisher.location독일-
dc.subject.keywordAuthorlow-power-
dc.subject.keywordAuthormemristors-
dc.subject.keywordAuthornonlinearity-
dc.subject.keywordAuthorscaling-
dc.subject.keywordAuthorsilicon nitride-
dc.subject.keywordPlusRESISTIVE SWITCHING CHARACTERISTICS-
dc.subject.keywordPlusRANDOM-ACCESS MEMORY-
dc.subject.keywordPlusULTRA-LOW POWER-
dc.subject.keywordPlusFORMING-FREE-
dc.subject.keywordPlusHFO2-BASED RRAM-
dc.subject.keywordPlusSELF-COMPLIANCE-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusMECHANISMS-
dc.subject.keywordPlusTHICKNESS-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Electrical and Electronics Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Min Hwi photo

Kim, Min Hwi
창의ICT공과대학 (전자전기공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE