Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Vacuum-free lamination via controlled polymer adhesion for selective photogeneration and photodetectionopen access

Authors
Kim, Min SooLim, JihyunJang, WoongsikWang, Dong Hwan
Issue Date
Feb-2024
Publisher
WILEY
Keywords
conjugated; nonfullerene acceptor; photodetectors; photovoltaics; polymer; vacuum-free lamination
Citation
CARBON ENERGY
Journal Title
CARBON ENERGY
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/72921
DOI
10.1002/cey2.494
ISSN
2637-9368
2637-9368
Abstract
This study attempts to develop a reproducible thin-film formation technique called vacuum-free (VF) lamination, which transfers thin films using elastomeric polymer-based laminating mediators. Precisely, by controlling the interface characteristics of the mediator based on the work of adhesion, VF lamination is successfully performed for various thicknesses (from 20 to 240 nm) of a conjugated photoactive material composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bMODIFIER LETTER PRIME]dithiophene))-alt-(5,5-(1MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-di-2-thienyl-5MODIFIER LETTER PRIME,7MODIFIER LETTER PRIME-bis(2-ethylhexyl)benzo[1MODIFIER LETTER PRIME,2MODIFIER LETTER PRIME-c:4MODIFIER LETTER PRIME,5MODIFIER LETTER PRIME-cMODIFIER LETTER PRIME]dithiophene-4,8-dione)] (a polymer donor) and 2,2MODIFIER LETTER PRIME-((2Z,2MODIFIER LETTER PRIMEZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2MODIFIER LETTER PRIMEMODIFIER LETTER PRIME,3MODIFIER LETTER PRIMEMODIFIER LETTER PRIME:4MODIFIER LETTER PRIME,5MODIFIER LETTER PRIME]thieno[2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME:4,5]pyrrolo[3,2-g]thieno[2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (a nonfullerene acceptor). Interestingly, the organic photovoltaic and photodetecting applications, prepared by the VF lamination process, showed superior performance compared to those of devices prepared by conventional spin-coating. This is due to the overturned surface morphology, which led to enhanced charge transport ability and blocking of the externally injected charge. Thus, the reproducible VF lamination process, exploiting an adhesion-based elastomeric polymer mediator, is a promising thin-film formation technique for developing efficient next-generation organic optoelectronic materials consistent with the solution process. Efficient organic electronic devices were fabricated using a vacuum-free (VF) lamination process considering the adhesion between the mediator and poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-bMODIFIER LETTER PRIME]dithiophene))-alt-(5,5-(1MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-di-2-thienyl-5MODIFIER LETTER PRIME,7MODIFIER LETTER PRIME-bis(2-ethylhexyl)benzo[1MODIFIER LETTER PRIME,2MODIFIER LETTER PRIME-c:4MODIFIER LETTER PRIME,5MODIFIER LETTER PRIME-cMODIFIER LETTER PRIME]dithiophene-4,8-dione)]:2,2MODIFIER LETTER PRIME-((2Z,2MODIFIER LETTER PRIMEZ)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2MODIFIER LETTER PRIMEMODIFIER LETTER PRIME,3MODIFIER LETTER PRIMEMODIFIER LETTER PRIME:4MODIFIER LETTER PRIME,5MODIFIER LETTER PRIME]thieno[2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME:4,5]pyrrolo[3,2-g]thieno[2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile as a photoactive layer. The optimized photovoltaic (PV) and photodetecting (PD) applications based on the VF lamination showed superior PV and PD performances than those of the spin-coated devices owing to not only the improvement of internal charge transport ability and resistances but also the suppressed dark current by a surface-morphology reversal effect. image
Files in This Item
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Wang, Dong Hwan photo

Wang, Dong Hwan
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE