Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Innovative approach for estimating evapotranspiration and gross primary productivity by integrating land data assimilation, machine learning, and multi-source observations

Authors
He, XinleiLiu, ShaominBateni, Sayed M.Xu, TongrenJun, ChanghyunKim, DongkyunLi, XinSong, LishengZhao, LongXu, ZiweiWei, Jiaxing
Issue Date
Aug-2024
Publisher
Elsevier B.V.
Keywords
Land data assimilation; Machine learning; Multi-source observations; Noah-MP; SIF observation operator; Soil moisture bias-correction model
Citation
Agricultural and Forest Meteorology, v.355
Journal Title
Agricultural and Forest Meteorology
Volume
355
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/75189
DOI
10.1016/j.agrformet.2024.110136
ISSN
0168-1923
1873-2240
Abstract
The integration of data assimilation (DA) and machine learning (ML) methods helps to incorporate multi-source observations into physical models, enabling more accurate estimation of evapotranspiration (ET) and gross primary productivity (GPP). Therefore, in this study, the ML-based soil moisture (SM) bias-correction model and solar-induced chlorophyll fluorescence (SIF) observation operator are incorporated into the land data assimilation system (LDAS). Thereafter, remotely sensed leaf area index (LAI), SM, land surface temperature (LST), and SIF data are assimilated to improve the performance of the Noah-MP model. The LDAS-ML framework is developed and evaluated in the Heihe River Basin of China. Analytical results suggest that the LDAS-ML system can fully exploit information from remotely sensed LAI, LST, and SIF data, along with multi-source SM observations, to enhance the accuracy of ET and GPP estimations. The root mean square errors (RMSEs) of daily ET (GPP) estimates from LDAS-ML at the Arou, Daman, and Sidaoqiao sites are 27.27 % (59.35 %), 51.71 % (56.28 %), and 61.07 % (53.73 %) lower than those of Noah-MP, respectively. Comparisons of the daily ET and GPP retrievals from the LDAS-ML method with three ET (GLEAM, ET-Monitor, and HiTLL) and GPP (GLASS, GOSIF-GPP, and VPM) products indicate that the LDAS-ML method outperforms the remote sensing products, yielding estimates with higher accuracy and lower relative uncertainty. Additionally, in arid and sparsely vegetated areas, the improvements in land surface models are more pronounced from integrating multi-source SM observations than vegetation information. This study suggests that ML methods can effectively exploit multi-source observations to improve the performance of LDAS and provide more accurate estimates of land surface variables. © 2024 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jun, Changhyun photo

Jun, Changhyun
공과대학 (건설환경플랜트공학)
Read more

Altmetrics

Total Views & Downloads

BROWSE