Detailed Information

Cited 11 time in webofscience Cited 11 time in scopus
Metadata Downloads

Current approaches in biomaterial-based hematopoietic stem cell niches

Authors
Bello, Alvin BaceroPark, HansooLee, Soo-Hong
Issue Date
May-2018
Publisher
ELSEVIER SCI LTD
Keywords
Hematopoietic stem cells; Biomaterial; Stem cell niche; Bone marrow; 3D scaffold
Citation
ACTA BIOMATERIALIA, v.72, pp 1 - 15
Pages
15
Journal Title
ACTA BIOMATERIALIA
Volume
72
Start Page
1
End Page
15
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/974
DOI
10.1016/j.actbio.2018.03.028
ISSN
1742-7061
1878-7568
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitor cells that can differentiate and replenish blood and immune cells. While there is a growing demand for autologous and allogeneic HSC transplantation owing to the increasing incidence of hereditary and hematologic diseases, the low population of HSCs in cord -blood and bone marrow (the main source of HSCs) hinders their medical applicability. Several cytokine and growth factor-based methods have been developed to expand the HSCs in vitro; however, the expansion rate is low, or the expanded cells fail to survive upon engraftment. This is at least in part because the overly simplistic polystyrene culture substrates fail to fully replicate the microenvironments or niches where these stem cells live. Bone marrow niches are multi-dimensional, complex systems that involve both biochemical (cells, growth factors, and cytokines) and physiochemical (stiffness, 02 concentration, and extracellular matrix presentation) factors that regulate the quiescence, proliferation, activation, and differentiation of the HSCs. Although several studies have been conducted on in vitro HSC expansion via 2D and 3D biomaterial-based platforms, additional work is required to engineer an effective biomaterial platform that mimics bone marrow niches. In this study, the factors that regulate the HSC in vivo were explained and their applications in the engineering of a bone marrow biomaterial-based platform were discussed. In addition, current approaches, challenges, and the future direction of a biomaterial-based culture and expansion of the HSC were examined. Statement of Significance Hematopoietic stem cells (HSC) are multipotent cells that can differentiate and replace the blood and immune cells of the body. However, in vivo, there is a low population of these cells, and thus their use in biotherapeutic and medical applications is limited (i.e., bone marrow transplantation). In this review, the biochemical factors (growth factors, cytokines, co-existing cells, ECM, gas concentrations, and differential gene expression) that may regulate the over-all fate of HSC, in vivo, were summarized and discussed. Moreover, different conventional and recent biomaterial platforms were reviewed, and their potential in generating a biomaterial-based, BM niche-mimicking platform for the efficient growth and expansion of clinically relevant HSCs in-vitro, was discussed. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of ICT Engineering > School of Integrative Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Hansoo photo

Park, Hansoo
창의ICT공과대학 (융합공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE