Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Wireless Multihop Device-to-Device Caching Networks

Authors
Jeon, Sang-WoonHong, Song-NamJi, MingyueCaire, GiuseppeMolisch, Andreas F.
Issue Date
Mar-2017
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Caching; device-to-device networks; multihop transmission; scaling laws
Citation
IEEE TRANSACTIONS ON INFORMATION THEORY, v.63, no.3, pp.1662 - 1676
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON INFORMATION THEORY
Volume
63
Number
3
Start Page
1662
End Page
1676
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10115
DOI
10.1109/TIT.2017.2654341
ISSN
0018-9448
Abstract
We consider a wireless device-to-device network, where n nodes are uniformly distributed at random over the network area. We let each node caches M files from a library of size m >= M. Each node in the network requests a file from the library independently at random, according to a popularity distribution, and is served by other nodes having the requested file in their local cache via (possibly) multihop transmissions. Under the classical "protocol model" of wireless networks, we characterize the optimal per-node capacity scaling law for a broad class of heavy-tailed popularity distributions, including Zipf distributions with exponent less than one. In the parameter regime of interest, i.e., m = o(nM), we show that a decentralized random caching strategy with uniform probability over the library yields the optimal per-node capacity scaling of Theta(root M/m) for heavy-tailed popularity distributions. This scaling is constant with n, thus yielding throughput scalability with the network size. Furthermore, the multihop capacity scaling can be significantly better than for the case of single-hop caching networks, for which the per-node capacity is Theta(M/m). The multihop capacity scaling law can be further improved for a Zipf distribution with exponent larger than some threshold >1, by using a decentralized random caching uniformly across a subset of most popular files in the library. Namely, ignoring a subset of less popular files (i.e., effectively reducing the size of the library) can significantly improve the throughput scaling while guaranteeing that all nodes will be served with high probability as n increases.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF MILITARY INFORMATION ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Sang Woon photo

Jeon, Sang Woon
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE