Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

pH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity While Decreasing the Cytotoxicity

Authors
Waqas, MuhammadJeong, Woo-jinLee, Young-JooKim, Dae-HwanRyou, ChongsukLim, Yong-beom
Issue Date
Mar-2017
Publisher
American Chemical Society
Keywords
DESIGN; MOLECULES; NEURODEGENERATIVE DIEASSE; PENETRATING PEPTIDES; BRANCHED POLYAMINES; PROTEIN; AGGREGATION; ALZHEIMERS; DELIVERY
Citation
Biomacromolecules, v.18, no.3, pp.943 - 950
Indexed
SCIE
SCOPUS
Journal Title
Biomacromolecules
Volume
18
Number
3
Start Page
943
End Page
950
URI
https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/10137
DOI
10.1021/acs.biomac.6b01816
ISSN
1525-7797
Abstract
The first step in the conventional approach to self-assembled biomaterials is to develop well-defined nano structures in vitro, which is followed by disruption of the preformed nanostructures at the inside of the cell to achieve bioactivity. Here, we propose an inverse strategy to develop in-cell gain-of-function self-assembled nanostructures. In this approach, the supramolecular building blocks exist in a unimolecular/unordered state in vitro or at the outside of the cell and assemble into well-defined nanostructures after cell internalization. We used block copolypeptides of an oligoarginine and a self-assembling peptide as building blocks and investigated correlations among the nanostructural state, antiprion bioactivity, and cytotoxicity. The optimal bioactivity (i.e., the highest antiprion activity and lowest cytotoxicity) was obtained when the building blocks existed In a unimolecular/unordered state in vitro and during the cell internalization process, exerting minimal cytotoxic damage to cell membranes, and were subsequently converted into high-charge-density vesicles in the low pH endosome/lysosomes in vivo, thus, resulting in the significantly enhanced antiprion activity. In particular, the in-cell self assembly concept presents a feasible approach to developing therapeutics against protein misfolding diseases. In general, the in cell self-assembly provides a novel inverse methodology to supramolecular bionanomaterials.
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF PHARMACY > DEPARTMENT OF PHARMACY > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ryou, Chong suk photo

Ryou, Chong suk
COLLEGE OF PHARMACY (DEPARTMENT OF PHARMACY)
Read more

Altmetrics

Total Views & Downloads

BROWSE